Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The first James Webb Space Telescope (JWST) Near InfraRed Camera imaging in the field of the galaxy cluster PLCK G165.7+67.0 (z= 0.35) uncovered a Type Ia supernova (SN Ia) atz= 1.78, called “SN H0pe.” Three different images of this one SN were detected as a result of strong gravitational lensing, each one traversing a different path in spacetime, thereby inducing a relative delay in the arrival of each image. Follow-up JWST observations of all three SN images enabled photometric and rare spectroscopic measurements of the two relative time delays. Following strict blinding protocols which oversaw a live unblinding and regulated postunblinding changes, these two measured time delays were compared to the predictions of seven independently constructed cluster lens models to measure a value for the Hubble constant,H0 = 71.8 + 9.2 − 8.1 km s−1Mpc−1. The range of admissibleH0values predicted across the lens models limits further precision, reflecting the well-known degeneracies between lens model constraints and time delays. It has long been theorized that a way forward is to leverage a standard candle, but this has not been realized until now. For the first time, the lens models are evaluated by their agreement with the SN absolute magnifications, breaking degeneracies and producing our best estimate,H0 = km s−1Mpc−1. This is the first precise measurement ofH0from a multiply imaged SN Ia and only the second from any multiply imaged SN.more » « less
-
ABSTRACT We measure the current expansion rate of the Universe, Hubble’s constant $$H_0$$, by calibrating the absolute magnitudes of supernovae to distances measured by baryon acoustic oscillations (BAO). This ‘inverse distance ladder’ technique provides an alternative to calibrating supernovae using nearby absolute distance measurements, replacing the calibration with a high-redshift anchor. We use the recent release of 1829 supernovae from the Dark Energy Survey spanning $$0.01\lt z\lt 1.13$$ anchored to the recent baryon acoustic oscillation measurements from Dark Energy Spectroscopic Instrument (DESI) spanning $$0.30 \lt z_{\mathrm{eff}}\lt 2.33$$. To trace cosmology to $z=0$, we use the third-, fourth-, and fifth-order cosmographic models, which, by design, are agnostic about the energy content and expansion history of the universe. With the inclusion of the higher redshift DESI-BAO data, the third-order model is a poor fit to both data sets, with the fourth-order model being preferred by the Akaike Information Criterion. Using the fourth-order cosmographic model, we find $$H_0=67.19^{+0.66}_{-0.64}\mathrm{~km} \mathrm{~s}^{-1} \mathrm{~Mpc}^{-1}$$, in agreement with the value found by Planck without the need to assume Flat-$$\Lambda$$CDM. However, the best-fitting expansion history differs from that of Planck, providing continued motivation to investigate these tensions.more » « lessFree, publicly-accessible full text available January 23, 2026
-
ABSTRACT Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance–redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here, we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light curve in combination with Gaussian and full $p(z)$ priors from host-galaxy photo-z estimates. Using the DES 5-yr photometrically classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3 × 2 point analyses. With detailed catalogue-level simulations of the DES 5-yr sample, we find that the simulated w can be recovered within $$\pm 0.02$$ when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within $${\sim} 1\sigma$$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses.more » « less
-
Context.The determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of the most common approaches is machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms. Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs. Aims.The goal of this work is to calculate the photo-zsfor the Year 3 (Y3) Dark Energy Survey (DES) Deep Fields catalogue using the Directional Neighborhood Fitting (DNF) machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained by DNF on the Y3 DES Deep Fields catalogue with that of the EAzY template fitting approach. Methods.We emulated – at a brighter magnitude – the training incompleteness with a spectroscopic sample whose redshifts are known to have a measurable view of the problem. We used a principal component analysis to graphically assess the incompleteness and relate it with the performance parameters provided by DNF. Finally, we applied the results on the incompleteness to the photo-zcomputation on the Y3 DES Deep Fields with DNF and estimated its performance. Results.The photo-zsof the galaxies in the DES deep fields were computed with the DNF algorithm and added to the Y3 DES Deep Fields catalogue. We have developed some techniques to evaluate the performance in the absence of “true” redshift and to assess the completeness. We have studied the tradeoff in the training sample between the highest spectroscopic redshift quality versus completeness. We found some advantages in relaxing the highest-quality spectroscopic redshift requirements at fainter magnitudes in favour of completeness. The results achieved by DNF on the Y3 Deep Fields are competitive with the ones provided by EAzY, showing notable stability at high redshifts. It should be noted that the good results obtained by DNF in the estimation of photo-zsin deep field catalogues make DNF suitable for the future Legacy Survey of Space and Time (LSST) andEucliddata, which will have similar depths to the Y3 DES Deep Fields.more » « less
-
Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are 0.017 in a flat ΛCDM model, and = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.more » « less
-
ABSTRACT We present an extension to a Sunyaev–Zel’dovich Effect (SZE) selected cluster catalogue based on observations from the South Pole Telescope (SPT); this catalogue extends to lower signal to noise than the previous SPT–SZ catalogue and therefore includes lower mass clusters. Optically derived redshifts, centres, richnesses, and morphological parameters together with catalogue contamination and completeness statistics are extracted using the multicomponent matched filter (MCMF) algorithm applied to the S/N > 4 SPT–SZ candidate list and the Dark Energy Survey (DES) photometric galaxy catalogue. The main catalogue contains 811 sources above S/N = 4, has 91 per cent purity, and is 95 per cent complete with respect to the original SZE selection. It contains in total 50 per cent more clusters and twice as many clusters above z = 0.8 in comparison to the original SPT-SZ sample. The MCMF algorithm allows us to define subsamples of the desired purity with traceable impact on catalogue completeness. As an example, we provide two subsamples with S/N > 4.25 and S/N > 4.5 for which the sample contamination and cleaning-induced incompleteness are both as low as the expected Poisson noise for samples of their size. The subsample with S/N > 4.5 has 98 per cent purity and 96 per cent completeness and is part of our new combined SPT cluster and DES weak-lensing cosmological analysis. We measure the number of false detections in the SPT-SZ candidate list as function of S/N, finding that it follows that expected from assuming Gaussian noise, but with a lower amplitude compared to previous estimates from simulations.more » « less
-
We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at and , respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be . We place a 95% upper bound on the subhalo mass at . By contrast, we assume the blue LSBGs are centrals, and place a 95% upper bound on the halo mass at . We find that the stellar-to-halo mass ratio of the LSBG samples is consistent with that of the general galaxy population. This work illustrates the viability of using weak gravitational lensing to constrain the halo masses of LSBGs.more » « less
-
ABSTRACT The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2, and 1.5, which extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal to noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe Ωm and the Hubble parameter h, $$\Omega _m h = 0.195^{+0.023}_{-0.018}$$, and 2–3 per cent measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, bσ8. A companion paper (in preparation) will present the cross-correlations of these high-z samples with cosmic microwave background lensing from Planck and South Pole Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.more » « less
-
Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find in flatwCDM. For flatw0waCDM, we find , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.more » « less
An official website of the United States government
